Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Farkhanda Shaheen, ${ }^{\text {a }}$

Muhammad Najam-UI-Haq, ${ }^{\text {b }}$
Klaus Wurst, ${ }^{\text {c }}$ Amin Badshah ${ }^{\text {a }}$ and Saqib Ali ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan,
${ }^{\text {b }}$ Department of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and
${ }^{\text {c Institute }}$ of General, Inorganic and Theoretical Chemistry, Innrain 52a, University of Innsbruck, A-6020 Innsbruck, Austria

Correspondence e-mail:
aminbadshah@yahoo.com

Key indicators

Single-crystal X-ray study
$T=233 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.026$
$w R$ factor $=0.061$
Data-to-parameter ratio $=15.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Chloro(4-methylpiperidine-1-dithiocarbamato- $\left.\kappa^{2} S: S^{\prime}\right)$ -(triphenylphosphine- κ P) palladium(II)

In the title compound, $\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NS}_{2}\right) \mathrm{Cl}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, the Pd atom is four-coordinate and exhibits a slightly distorted square-planar geometry.

Comment

Palladium(II) complexes with sulfur and phosphorus donor ligands are of current interest due to their ability to sequester the metal ion (Faraglia et al., 2005), their antitumor activity against leukemic cells (Mital et al., 1989; Tiekink, 2002), and their use as pesticides (Fackler, 2002) and antimicrobial agents (Ronconi et al., 2005), while palladium(II)-phosphine complexes are also important from a catalytic point of view (Crawforth et al., 2005; Tsuji, 1995), e.g. $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CN})_{2}\right]$ (Hua et al., 2001), $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ (Nicholas, 1987).

(I)

In the title compound, (I), the dithiocarbamate ligand acts as a bidentate chelate, coordinating to Pd via both S atoms. Atom S2 is trans to the chloro ligand and atom S1 trans to the triphenylphosphine ligand (Fig. 1 and Table 1). The coordination geometry about the Pd atom is distorted square planar and the deviation of the Pd1 atom from the mean plane through the ligand donor atoms is only 0.0103 (4) \AA.

Experimental

4-Methylpiperidine-1-dithiocarbamic acid (Vogel, 1968) dissolved ($0.2 \mathrm{~g}, 1.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added to a suspension of $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)\right](0.5 \mathrm{~g}, 1.14 \mathrm{mmol})$ (Kitano et al., 1983) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{ml})$. The resulting solution was refluxed for 1 h . Yellow crystals were obtained on slow evaporation of the solvent at room temperature.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NS}_{2}\right) \mathrm{Cl}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$	$D_{x}=1.530 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=578.42$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=10.1668(3) \AA$	Cell parameters from 13105
$b=13.8325(4) \AA$	$\theta=1.0-26.0^{\circ}$
$c=17.8608(4) \AA$	$\mu=1.09 \mathrm{~mm}^{-1}$
$\beta=90.162(2)^{\circ}$	$T=233(2) \mathrm{K}$
$V=2511.79(12) \AA^{3}$	Prism, yellow
$Z=4$	$0.2 \times 0.12 \times 0.1 \mathrm{~mm}$

Received 14 November 2005 Accepted 13 December 2005 Online 21 December 2005

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: none
13105 measured reflections
4405 independent reflections
3853 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.061$
$S=1.05$
4405 reflections
280 parameters
H-atom parameters constrained

$$
\begin{aligned}
& R_{\text {int }}=0.025 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-16 \rightarrow 16 \\
& l=-21 \rightarrow 21
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0201 P)^{2}\right.} \\
&\quad+2.004 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.39 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.55 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

References

Crawforth, C. M., Burling, S., Fairlamb, I. J. S., Kapdi, A. R., Taylor, R. J. K. \& Whitwood, A. C. (2005). Tetrahedron, 61, 9736-9751.
Fackler, J. P. (2002). Inorg. Chem. 41, 6959-6972.
Faraglia. G., Sitran, S. \& Montagner, D. (2005). Inorg. Chim. Acta, 358, $971-$ 980.

Hua, R., Goto, M. \& Tanaka, M. (2001). Anal. Sci. 17, 469-470.
Kitano, Y., Kinoshita, Y., Nakamura, R. \& Ashida, T. (1983). Acta Cryst. C39, 1015-1017.
Mital, R., Jain, N. \& Srivastava, T. S. (1989). Inorg. Chim. Acta, 166, 135-140.
Nicholas, P. P. (1987). J. Org. Chem. 52, 5266-5272.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Ronconi, L., Maccato, C., Barreca, D., Saini, R., Zancato, M. \& Fregona, D. (2005). Polyhedron, 24, 521-531.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Tiekink, E. R. T. (2002). Crit. Rev. Oncol. Hematol. 24, 225-248.
Tsuji, J. (1995). Palladium Reagents and Catalysts, pp. 125-525. New York: John Wiley and Sons.
Vogel, A. I. (1968). A Textbook of Practical Organic Chemistry, pp. 499-500. London: ELBS Publication.

